ON THE MOTION OF A BODY UNDER THE ACTION
OF AN EXTERNAL ENERGY SOURCE

V. P. Korobeinikov UDC 533.6.013.1

We present a theoretical analysis of the problem of the acceleration of a body of revolution
by means of a reactive gas jet with energy supplied from an external source. Heating of
the gases flowing out through a nozzle in the tail portion of the body can be accomplished
with a laser beam. The reactive thrust has been calculated in 2 one-dimensional approxi-
mation.

1. We consider the problem concerning the motion in a gas or in a vacuum of a body M of mass m,
for the case in which the motion of M is due to an external energy source or to an internal energy source
with a mass negligible in comparison with m;. For definiteness we assume that the body has a cylindrical
shape and is bounded at the one end by a flat circular face or by a cone with a small spherically blunt end
(the head portion), and at the other end (the tail portion) it is assumed that the body has an indentation in
the shape of a surface of revolution.

Choosing the head portion of the body to have a flat end shape furnishes an example of a poorly
streamlined body, while the choice of a blunted cone helps to diminish the aerodynamic resistance which
the body encounters in the air at high speeds [1]. A reactive jet is produced in the tail portion of the body
and the shape of the indentation there must then accommodate the larger thrust obtained.

At aninitial instant t = 0 let energy Eyt) by supplied to the tail indentation (nozzle). This energy can
be supplied, for example, by a laser beam, the focussing of an electron beam, radio band electromagnetic
waves, and by other means, The resultant heating of the gases entering the nozzle or the vaporization of
the nozzle walls gives rise to a nonstationary flow. The heated gas or the vaporization products from the
‘walls of the tail chamber expands and flows out into the surrounding space. The resulting reaction force
then sets the body into motion,

2. We consider approximate methods for calculating the acceleration, thrust, and specific impulse
which arise for two basic models of the processes occurring in the tail nozzle.

Model 1, M moves under the action of reactive forces arising during the heating and expansion of
the gases entering the tail nozzle from the forward and middle portions of the body.

Model 2, M moves as the result of the reactive forces which arise as the vaporization products
from the nozzle walls flow out.

According to Newton's second law

du
m —
dt

=F, @

where U is the velocity of the body M, m is its mass at time t, and Fg represents the resultant external
forces acting on the body M.

Taking the motion of the body vertically upwards with respect to the earth's surface, we assume that
Fe is directed vertically, where
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Fig. 1. Geometric parameters of the tail section of the
body.
F,==—-mg—Fp--Fg; (2)

here FT is the thrust, i.e., the reactive force acting on M; Fp is the air resistance; and g is the gravita-
tional acceleration. From gas dynamics it is known (see, for example, [2, 3]) that if v, is the gas velocity,
averaged over the exterior end section of the nozzle, and Q is the mass outflow rate of the gases, then the

nozzle thrust F7 is given by the simple expression

3
F. = Qu, - APA,, ®)
where AP is the excess pressure at the exterior section of the nozzle; Ay is the cross-sectional area of
the exterior section.

Using a quasi~one-dimensional approximation for flow in the nozzle, we can write [2, 3]

Q= “(’JU,LdA optx, Holx, 1) Ax),
3
where A(x) is the cross—-sectional area of the nozzle at the distance x from its narrowest section; p is the
average gas density at the section A; vp is the normal component {on A) of the gas velocity (see Fig. 1).
The specific impulse Igp can be defined as follows:

I, = % . 4)
g

In what follows we neglect, for simplicity, the influence of gravity and the air resistance force Fp. Then
for Q = const, vy = const, AP = 0, we obtain from the relations (1)-(3)
al Gy : (5)

dt m

If the nozzle outflow rate takes place at the expense of a mass loss in the body M, we can write m = m,
— @t, and, in accordance with relation (5), we have the known expression (see, for example, [4])

U =0 ln T (6)

(we have here taken into account the fact that U = 0 for t = 0).
When variation in the mass of the body M can be neglected, we have, from equation (5), the result

Q, 4

m

U -

M

0
3. For flow in the nozzle according to Model 1 we have the following two cases:

a) A continuous supply of gas goes on at the section A, (for example, with the aid of an air intake)
and a pressure Py is maintained at the expense of external heating.

b} At the section Ay, the linear dimensions of which are negligibly small in comparison with the
transverse size of the body M, a quantity of energy E; is injected instantaneously at the time t = 0 and the
nozzle is filled with a quiescent gas or a gas in stationary motion.
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We consider the problem of determining the nozzle parameters in the case a) when the pressure P,
is given, the flow is stationary, and P; is close to the value of the retardation pressure. For a flow tube
we have, in accordance with Bernoulli's equation,

2t 8)

vy = —l,'/ _QL _BO_) 1 —- ( Py ) v
y—1 0y Py ’

where p, is the density at the section Ay; v is the effective exponent of adiabaticity; and Py is the pressure
at the outer section of the nozzle. For the density p;, assuming adiabaticity, we have

1
) ! ) ®
[ 'n( P, .

Relations for averaged flows were given in [2] under more general assumptions,

We can assume the pressure Py at theouter section of the nozzle to be given. If we assign Py and
pg (or the temperature at the section A;, where the speed is small), then we can determine from the equa-
tions (8) and (9) the outflow speed vy and the density p;. For a stationary flow the energy flow of gas in the
nozzle must be equal to the energy supplied by the laser or by other means. From the integral energy
conservation law we have the relationship

o o (10)
Ini - [00 ) al? Adx - \ gtoAdx,
where
v P .
I, - \] (\E R T) (}"';.d"q-

i
a(e and q(e) are, respectively, the specific work of the external forces and the specific external heat in-
put; Iy and Iy, are the total heat content flows at the sections A(x) and A, respectively. If, for simpli-

city, we neglect I, and a(e), and if we take \ q(e)Adx proportional to the cross-sectional area of the beam

and the intensity of theincident radiation, théﬁ, as an estimate of the energy supplied, we can write

Q{(T g 5 | =S, W

Here Sp is the beam cross-sectional area; W is the specific flow of energy absorbed by the gas. From
this we obtain
7P, 9

B e W U B
‘?"I“N’l 2 ; Sh ’

me%(

If we take ¥ = 1,25, 8¢/Sp =10, p; = 0.1 +1073 g/cm3, Py=1atm, vy =3 -10% cm/sec (this corresponds to
P, ~ 20 atm, p, = 107% g/cm?), then from Eq. (10) we obtain W ~ 5-10¢ W/cm®, Such energy flow densi~
ties are attainable with preseni-day lasers [8]. Since, with losses taken into account, these power densi-
ties must be increased by roughly an order of magnitude, there arises the problem of avoiding air break-
down along the laser beam path and also the preliminary ionization of the gas in the tail chamber to facili-
tate breakdown of the gas in the vicinity of the section A and to increase the coefficient of absorption of
‘the energy supplied. These problems will not be discussed here. If we take Ay =3-100 em?, then for

the parameter values indicated above we obtain, from the relations (3) and () with AP =0,

F,o~ 109 dyn, I, ~ 3.10% sec.

From relation (1) we find that the escape time to cosmic velocity for a body of mass 10° g is around 8 sec.

Case b). When the process in the nozzle is nonstationary, we must solve the following problem. At
the section A, at the initial instant, an input of mass Q(t) and energy E(t) commences. We shall consider
a comical nozzle. The initial density in the nozzle is assumed to be either constant or distributed accord-
ing to the law pe = n/R2 (see [6,7]). As a result of the energy and mass input to the gas, a nonstationary
flow commences. To determine the parameters of this flow we need to solve the nonstationary gasdynamic
equations for a one-dimensional spherically symmetric flow.
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We consider its solution only in the limiting case of negligibly small mass and an instantaneous de-
position of energy E, at the section A, Let pe =n/R%, and let the cone angle be small so that x ~ R,
where R is the radius vector from the point 0 (see Fig. 1). If we neglect counterpressure, the problem
obtained is that of a strong explosion, the solution for which is known {2].

The density and velocity distributions behind the shock wave that is formed are given by the approxi-
mate expressions {which are exact for w = 2, v = 5/3)
-2 R v+l (R
» f = 0, \
v1 p—1 L
6=2/5—w; s=3/(y—Lforw=0; s=1forw=2, v =5/3; rx= (Eo/n‘s/"’t‘5 and E is a quantity pro-
portional to the energy supplied. The outflow rate Q through the section A; = A(xy) of radius ry can be de~
termined approximately as

1)

Q - arlp (., oy, 0, (12)

Here the values of p(xy, t), v(x(, t) are taken from the relations (11) for R = x;.
Taking into account the relations (12), (11), and (3), we can determine the nonstationary thrust
acting on the body M. We present an approximate formula for the specific impulse:
/ o 20 x AP

£
ap g (1‘, e I) 7 gp]vl

For E =100 J, with x; = 10 cm, we have t = 0.2 sec, ¥ = 1.2 (t* = 0.1 sec), p =n = 107 g/cm?, Igp
~ 0.3 sec (w =0); alsot=0.1sec &* = 0.03sec), ¥y =5/3, n=1 g/cm3, Igp ® 1.5 sec (w = 2),

These numbers show that to obtain typical impulses Igp > 1, we need to take x4 < 10? cm or to supply
energy greater than 100 J (in the numerical data above the energy E; = E/o, where a <1 in the case of
small cone angles, but this does not improve substantially the estimates for Isp).

The estimates presented above were obtained in a quasi~stationary approximation. An exact account
of nonstationarity in a formula of the type (3) also changes the quantity Isp somewhat.

We note also that the time-averaged impulse will be somewhat higher than the instantaneous impulse.

4. For the Model 2, let us now suppose that the gases flowing out of the tail nozzle are formed as
a result of vaporization of the forward wall of the nozzle during heating by a laser beam focussed on the
area A;. For the velocity v, of the vapors flowing out we use the expression [8]

et e (1< R 13),
ol C(T, — Tl

where W is the absorbed power of the electromagnetic source, L is the specific heat of vaporization of the
material with density py; C is the heat capacity of the material; Ty is the vaporization temperature; T,
is the ambient temperature. If we take Tp and py/k as retardation parameters, then, using the relations
{8) and (9), we can estimate the thrust and impulse from the scheme indicated above. However, since a
substantial mass loss of the body M can ocecur here, we must start from equation (6) in determining the
velocity of the body M.

Let Q be the material mass being vaporized per unit time. Taking this mass as the quantity being
discharged from the nozzle, and knowing v;, we can determine the thrust Fr.

To illustrate, we consider the case in which the nozzle tail surface 1s covered with lead. Then,
using known data [8], we find for the case W = 2:107 W/em?, Ay =102 em?, vy =3-10' cm/sec, Q = 30
g/sec. Taking the outflow velocity vy equal to 2-10° ecm/sec, we find a thrust Fp = 6-10% dyn ~ 6 kg.
From Eq. (6) we find that the time taken to attain the velocity U is

m N

I oo QO {I—c o

From this, with m, = 100 g, we find that the time taken to attain cosmic velocity is around 3 sec, during
which time 98% of the mass of the body will have been spent.
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The calculations given here show that, in principle, a body of small mass can be accelerated to

cosmic velocities with the aid of external energy sources. The principles considered for such accelera-
tions can be used for modelling the motion of meteorites in the earth's atmosphere and in the atmospheres
of other planets.

We note, in conclusion, that our results correspond, in part, to the schemes for the acceleration of

bodies that were mentioned in [5] but with no supporting calculations.
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NOTATION

is the body velocity;

is the reactive force;

is the gas outflow velocity;

is the specific mechanical impulse;

is the flow-rate;

is the absorbed power of laser radiation;
is the coordinate along the nozzle axis;
is the cross—-sectional area.
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